
SDL𝑝𝑐𝑓
Release 0.0.1

Dec 31, 2021

Getting Started:

1 Building SDL_pcf 3
1.1 Unix (Autotools) . 3
1.2 Documentation (Sphinx): . 3

2 Using SDL_pcf 5
2.1 Direct writing . 5
2.2 Static fonts . 7

3 API documentation 9
3.1 Direct Writing . 9
3.2 Static fonts . 11

4 Indices and tables 15

Index 17

i

ii

SDL𝑝𝑐𝑓,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.1

With SDL_pcf you can know easily use pixel-perfect bitmap fonts with SDL2:

• Use thousands of existing X11 bitmap fonts, including terminus

• Direct-to-surface writing (no temp surface needed)

• Hardware-accelerated rendering supported with SDL2 Renderer API or SDL_gpu

Using PCF fonts is as simple as:

PCF_Font *font;
font = PCF_OpenFont("ter-x24n.pcf.gz");
PCF_FontWrite(font, "Hello world !", white, screenSurface, &location);

Getting Started: 1

http://terminus-font.sourceforge.net/
https://github.com/grimfang4/sdl-gpu

SDL𝑝𝑐𝑓,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.1

2 Getting Started:

CHAPTER 1

Building SDL_pcf

SDL_pcf depends on SDL2 and zlib. It has optional support for SDL_gpu

1.1 Unix (Autotools)

1 $./configure --prefix=/usr
2 $ make
3 $ make check # build demos in ./test (optional)
4 $ [sudo] make install # install to system (optional)

make will build cglm to src/.libs sub folder in project folder. If you don’t want to install cglm to your system’s folder
you can get static and dynamic libs in this folder. Headers (*.h) will be found in the src folder.

1.2 Documentation (Sphinx):

SDL_pcf documentation is based on sphinx.

To build html documentation do the following:

1 $ cd docs
2 $ make html

3

https://github.com/grimfang4/sdl-gpu
http://terminus-font.sourceforge.net/

SDL𝑝𝑐𝑓,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.1

4 Chapter 1. Building SDL_pcf

CHAPTER 2

Using SDL_pcf

SDL_pcf works with bitmap fonts distributed as PCF files. Those fonts originates from Unix X11 and are distributed
as a collection of files each file being a representation of characters in the font in a specific size/variant, variant being
italic and bold.

For example, the file that comes with SDL_pcf tests, ter-x24n.pcf.gz is the Terminus font, “normal” variant, 24 points.
The “bold” variant would be ter-x24b.pcf.gz. Chances are high that you already have a couple of fonts installed on
your system.

Find them out with:

$ find /usr/share/fonts/ -name "*.pcf" -or -name "*.pcf.gz"

SDL_pcf can be used in two ways:

• Direct writing of any character of the font to an SDL_Surface or using a SDL_Renderer.

• Pre-render a set of characters to a surface or a texture and then blit those pre-rendererd characters to their
destination. This can be hardware accelerated (SDL_Renderer or SDL_gpu).

2.1 Direct writing

This mode is the simplest and the more flexible, all characters from the font can be drawn. However it requires
pixel-level access as SDL_pcf will use the data from the PCF font to light the appropriate pixels.

It can be used either with SDL_Surfaces or go through the SDL_Renderer API.

A typical use case would be like:

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <SDL.h>
4

5 #include "SDL_pcf.h"
6

(continues on next page)

5

SDL𝑝𝑐𝑓,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.1

(continued from previous page)

7 #define SCREEN_WIDTH 640
8 #define SCREEN_HEIGHT 480
9

10 int main(int argc, char *argv[])
11 {
12 SDL_Window* window = NULL;
13 SDL_Surface* screenSurface = NULL;
14 Uint32 black, white;
15 PCF_Font *font;
16

17 if (SDL_Init(SDL_INIT_VIDEO) < 0) {
18 fprintf(stderr, "could not initialize sdl2: %s\n", SDL_GetError());
19 return 1;
20 }
21

22 window = SDL_CreateWindow(
23 "SDL_pcf test drive",
24 SDL_WINDOWPOS_UNDEFINED, SDL_WINDOWPOS_UNDEFINED,
25 SCREEN_WIDTH, SCREEN_HEIGHT,
26 SDL_WINDOW_SHOWN
27);
28 if (window == NULL) {
29 fprintf(stderr, "could not create window: %s\n", SDL_GetError());
30 return 1;
31 }
32

33 screenSurface = SDL_GetWindowSurface(window);
34 if(!screenSurface){
35 printf("Error: %s\n",SDL_GetError());
36 exit(-1);
37 }
38

39 white = SDL_MapRGB(screenSurface->format, 0xFF, 0xFF, 0xFF);
40 black = SDL_MapRGB(screenSurface->format, 0x00, 0x00, 0x00);
41 SDL_FillRect(screenSurface, NULL, black);
42

43 font = PCF_OpenFont("ter-x24n.pcf.gz");
44 if(!font){
45 printf("%s\n", SDL_GetError());
46 exit(EXIT_FAILURE);
47 }
48

49 PCF_FontWrite(font, "Hello, World!", white, screenSurface, NULL);
50 SDL_UpdateWindowSurface(window);
51

52 SDL_Delay(4000);
53

54 PCF_CloseFont(font);
55

56 SDL_DestroyWindow(window);
57 SDL_Quit();
58

59 exit(EXIT_SUCCESS);
60 }

Build it with:

6 Chapter 2. Using SDL_pcf

SDL𝑝𝑐𝑓,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.1

$ gcc simple-test.c -o simple-test `pkg-config sdl2 SDL2_pcf --libs --cflags`

The relevant part is highlighted. The call to PCF_FontWrite() will write the “Hello, World!” string at 0,0 on
screenSurface.

You can see a more complex example of this in test/ayba.c.

2.2 Static fonts

Static fonts are a set of pre-rendered characters built from a font. This allows to avoid the need of direct pixel access
to the destination and allows faster blitting and hardware acceleration.

Static fonts are built from a loaded font and a set of characters. They are thus limited to that set.

Note: Static fonts can be compiled to use either SDL_Renderer(default) or SDL_gpu. This is defined at com-
pile time and can be check using PCF_TEXTURE_TYPE which will be either equal to PCF_TEXTURE_SDL2 or
PCF_TEXTURE_GPU .

SDL_pcf provide support functions to locate the character to copy but the actual blitting must be done by the client
code using the StaticFont struct texture member which will be of SDL_Texture**(default) or **GPU_Image type,
depending of build-time configuration (see note below).

You can see a good example of how all of this works together in: - test/ayba-sf.c for the SDL_Renderer API -
test/ayba-sf-gpu.c for usage with SDL_gpu

2.2. Static fonts 7

SDL𝑝𝑐𝑓,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.1

8 Chapter 2. Using SDL_pcf

CHAPTER 3

API documentation

3.1 Direct Writing

3.1.1 Functions

1. PCF_OpenFont()

2. PCF_CloseFont()

3. PCF_FontWriteChar()

4. PCF_FontWrite()

5. PCF_FontGetSizeRequest()

6. PCF_FontGetSizeRequestRect()

7. PCF_FontRenderChar()

8. PCF_FontRender()

3.1.2 Functions documentation

PCF_Font *PCF_OpenFont(const char *filename)
Opens a PCF font file. Supports both .pcf and .pcf.gz.

Parameters: filename The file to open

Returns: a PCF_Font opaque struct representing the font. The caller must call PCF_CloseFont when done
using the font.

void PCF_CloseFont(PCF_Font *self)
Free resources taken up by a loaded font. Caller code must always call PCF_CloseFont on all fonts it allocates.
Each PCF_OpenFont must be paired with a matching PCF_CloseFont.

Parameters: self The font to free.

9

SDL𝑝𝑐𝑓,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.1

bool PCF_FontWriteChar(PCF_Font *font, int c, Uint32 color, SDL_Surface *destination, SDL_Rect *lo-
cation)

Writes a character on screen, and advance the location by one char width. If the surface is too small to fit the
char or if the glyph is partly out of the surface (start writing a 18 pixel wide char 2 pixels before the edge) only
the pixels that can be written will be drawn, resulting in a partly drawn glyph and the function will return false.

Parameters:

c The ASCII code of the char to write. You can of course use ‘a’ instead of 97.
font The font to use to write the char. Opened by PCF_OpenFont.
color The color of text. Must be in @param destination format (use SDL_MapRGB/SDL_MapRGBA to
build a suitable value).
destination The surface to write to.
location Where to write on the surface. Can be NULL to write at 0,0. If not NULL, location will be
advanced by the width.

Returns: True on success(the whole char has been written), false on error/partial draw. Details of the failure
can be retreived with SDL_GetError().

bool PCF_FontWrite(PCF_Font *font, const char *str, Uint32 color, SDL_Surface *destination,
SDL_Rect *location)

Writes a string on screen. This function will try it’s best to write as many chars as possible: If the surface is not
wide enough to accomodate the whole string, it will stop at the very last pixel (and return false). This function
doesn’t wrap lines. Use PCF_FontGetSizeRequest to get needed space for a given string/font.

Parameters:

str The string to write.
font The font to use. Opened by PCF_OpenFont.
color The color of text. Must be in @param destination format (use SDL_MapRGB/SDL_MapRGBA to
build a suitable value).
destination The surface to write to.
location Where to write on the surface. Can be NULL to write at 0,0. If not NULL, location will be
advanced by the width of the string.

Returns: True on success(the whole string has been written), false on error/partial draw. Details of the failure
can be retreived with SDL_GetError().

bool PCF_FontRenderChar(PCF_Font *font, int c, SDL_Renderer *renderer, SDL_Rect *location)
Writes a character on a SDL_Renderer, and advance the given location by one char width. If the renderer is too
small to fit the char or if the glyph is partly out of the surface (start writing a 18 pixel wide char 2 pixels before
the edge) only the pixels that can be written will be drawn, resulting in a partly drawn glyph and the function
will return false.

Note that there is no color parameter: This is controlled at the SDL_Renderer level with
SDL_SetRenderDrawColor.

Parameters: c The ASCII code of the char to write. You can of course use ‘a’ instead of 97. font The font to
use to write the char. Opened by PCF_OpenFont. renderer The renderer that will be used to draw. location
Location within the renderer. Can be NULL to write at 0,0. If not NULL, location will be advanced by the
width.

Returns: True on success(the whole char has been written), false on error/partial draw. Details of the failure
can be retreived with SDL_GetError().

bool PCF_FontRender(PCF_Font *font, const char *str, SDL_Color *color, SDL_Renderer *renderer,
SDL_Rect *location)

Writes a string on renderer. This function will try it’s best to write as many chars as possible: If the renderer

10 Chapter 3. API documentation

SDL𝑝𝑐𝑓,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.1

is not wide enough to accomodate the whole string, it will stop at the very last pixel (and return false). This
function doesn’t wrap lines. Use PCF_FontGetSizeRequest to get needed space for a given string/font.

Parameters: str The string to write. font The font to use. Opened by PCF_OpenFont. color The color of text.
If not NULL, it will overrede the current renderer’s color. If NULL, the current renderer’s color will be
used. renderer The rendering context to use. location Where to write on the renderer. Can be NULL to
write at 0,0. If not NULL, location will be advanced by the width of the string.

Returns: True on success(the whole string has been written), false on error/partial draw. Details of the failure
can be retreived with SDL_GetError().

void PCF_FontGetSizeRequest(PCF_Font *font, const char *str, Uint32 *w, Uint32 *h)
Computes space (pixels width*height) needed to draw a string using a given font. Both @param w and @param
h can be NULL depending on which metric you are interested in. The function won’t fail if both are NULL, it’ll
just be useless.

Parameters: str The string whose size you need to know. font The font you want to use to write that string
w Pointer to somewhere to place the resulting width. Can be NULL. h Pointer to somewhere to place the
resulting height. Can be NULL.

void PCF_FontGetSizeRequestRect(PCF_Font *font, const char *str, SDL_Rect *rect)
Same PCF_FontGetSizeRequest as but fills an SDL_Rect. Rect x and y get initialized to 0.

Parameters: str The string whose size you need to know. font The font you want to use to write that string rect
Pointer to an existing SDL_Rect (cannot be NULL) to fill with the size request.

3.2 Static fonts

3.2.1 Macros

1. PCF_TEXTURE_TYPE

2. PCF_TEXTURE_SDL2

3. PCF_TEXTURE_GPU

4. PCF_LOWER_CASE

5. PCF_UPPER_CASE

6. PCF_ALPHA

7. PCF_DIGITS

3.2.2 Functions

1. PCF_FontCreateStaticFont()

2. PCF_FontCreateStaticFontVA()

3. PCF_FreeStaticFont()

4. PCF_StaticFontGetCharRect()

5. PCF_StaticFontGetSizeRequest()

6. PCF_StaticFontGetSizeRequestRect()

7. PCF_StaticFontCanWrite()

8. PCF_StaticFontCreateTexture()

3.2. Static fonts 11

SDL𝑝𝑐𝑓,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.1

3.2.3 Structure documentation

PCF_StaticFont
The structure has the following public members:

typedef struct{
SDL_Surface *raster;
xCharInfo metrics;
SDL_Texture|GPU_Image *texture;

}PCF_StaticFont;

PCF_StaticFont raster
The pre-rendered characters for that font, in a raster. Usable for any software blitting operation.

PCF_StaticFont texture
The pre-rendered characters for that font in a GPU-friendly texture. Be sure to call
PCF_StaticFontCreateTexture() before using it.

PCF_StaticFont metrics
See somewhere else

3.2.4 Macros documentation

PCF_TEXTURE_TYPE
Defined at build time to either PCF_TEXTURE_SDL2 (default) or PCF_TEXTURE_GPU

PCF_TEXTURE_SDL2
SDL_pcf is built to support SDL2 textures. PCF_StaticFont texture member is of SDL_Texture* type

PCF_TEXTURE_GPU
SDL_pcf is built to support SDL_gpu textures. PCF_StaticFont texture member is of GPU_Image* type

PCF_LOWER_CASE
Pre-defined character set for use with PCF_FontCreateStaticFont()

#define PCF_LOWER_CASE "abcdefghijklmnopqrstuvwxyz"

PCF_UPPER_CASE
Pre-defined character set for use with PCF_FontCreateStaticFont()

#define PCF_UPPER_CASE "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

PCF_ALPHA
Pre-defined character set for use with PCF_FontCreateStaticFont()

#define PCF_ALPHA "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"

PCF_DIGITS
Pre-defined character set for use with PCF_FontCreateStaticFont()

#define PCF_DIGITS "0123456789"

3.2.5 Functions documentation

PCF_StaticFont *PCF_FontCreateStaticFont(PCF_Font *font, SDL_Color *color, int nsets, ...)
Creates and return a pre-drawn set of characters. The font can be closed afterwards. The return value must be

12 Chapter 3. API documentation

SDL𝑝𝑐𝑓,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.1

freed by the caller using PCF_FreeStaticFont().

Once drawn, static fonts are immutable: You can’t add characters on the fly, or change colors. You’ll need to
create a new static font to do that. The purpose of PCF_StaticFont is to integrate with rendering systems based
on fixed bitmap data + coordinates, like SDL_Renderer or OpenGL.

Parameters:

font The font to draw with
color The color of the pre-rendered glyphs
nsets The number of glyph sets that follows
. . . Sets of glyphs to include in the cache, as const char*. You can use pre-defined sets such as
PCF_ALPHA, PCF_DIGITS, etc. The function will filter out duplicated characters.

Returns: a newly allocated PCF_StaticFont or NULL on error. The error will be available with SDL_GetError()

PCF_StaticFont *PCF_FontCreateStaticFontVA(PCF_Font *font, SDL_Color *color, int nsets,
size_t tlen, va_list ap)

va_list version of PCF_FontCreateStaticFont. The only difference is that this function needs to be provided with
the total(cumulative) length of all the strings that it gets through ap. This is due to the fact that va_list can’t be
rewinded when passed as an argument to a non-variadic function

Parameters:

font See PCF_FontCreateStaticFont() font
color See PCF_FontCreateStaticFont() color
nsets See PCF_FontCreateStaticFont() nsets
tlen Total (cumulative) len of the strings passed in.
ap List of nsets char*

Returns: See PCF_FontCreateStaticFont().

void PCF_FreeStaticFont(PCF_StaticFont *self)
Frees memory used by a static font. Each static font created using PCF_FontCreateStaticFont should be released
using this function.

Parameters: self The PCF_StaticFont to free.

int PCF_StaticFontGetCharRect(PCF_StaticFont *font, int c, SDL_Rect *glyph)
Find the area in self->raster holding a glyph for c. The area is suitable for a SDL_BlitSurface or a
SDL_RenderCopy operation using self->raster as a source

Parameters:

font The static font to search in.
c The char to search for.
glyph Location where to put the coordinates, when found.

Returns: 0 for whitespace (glpyh untouched), non-zero if font has something printable for c: 1 if the char as
been found, -1 otherwise. When returning -1, glpyh has been set to the default glyph.

void PCF_StaticFontGetSizeRequest(PCF_StaticFont *font, const char *str, Uint32 *w, Uint32 *h)
Computes space (pixels width*height) needed to draw a string using a given font. Both w and h can be NULL
depending on which metric you are interested in. The function won’t fail if both are NULL, it’ll just be useless.

Parameters:

str The string whose size you need to know.
font The font you want to use to write that string
w Pointer to somewhere to place the resulting width. Can be NULL.
h Pointer to somewhere to place the resulting height. Can be NULL.

3.2. Static fonts 13

SDL𝑝𝑐𝑓,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.1

void PCF_StaticFontGetSizeRequestRect(PCF_StaticFont *font, const char *str, SDL_Rect *rect)
Same PCF_StaticFontGetSizeRequest as but fills an SDL_Rect. Rect x and y get initialized to 0.

Parameters:

str The string whose size you need to know.
font The font you want to use to write that string
rect Pointer to an existing SDL_Rect (cannot be NULL) to fill with the size request.

bool PCF_StaticFontCanWrite(PCF_StaticFont *font, SDL_Color *color, const char *sequence)
Check whether font can be used to write all chars given in sequence in color color.

Parameters:

color The color you want to write in
sequence All the chars you may want to use

Returns: true if all chars of sequence can be written in color, false otherwise.

void PCF_StaticFontCreateTexture()
Creates a hardware-friendly texture into font. Parameters depends on which support (SDL2_Renderer or
SDL_gpu) was compiled in.

Parameters:

font The font to act on
renderer When using SDL2_Renderer, the renderer which the texture will belong to

14 Chapter 3. API documentation

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

15

SDL𝑝𝑐𝑓,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.1

16 Chapter 4. Indices and tables

Index

M
metrics (C member), 12

P
PCF_ALPHA (C macro), 12
PCF_CloseFont (C function), 9
PCF_DIGITS (C macro), 12
PCF_FontCreateStaticFont (C function), 12
PCF_FontCreateStaticFontVA (C function), 13
PCF_FontGetSizeRequest (C function), 11
PCF_FontGetSizeRequestRect (C function), 11
PCF_FontRender (C function), 10
PCF_FontRenderChar (C function), 10
PCF_FontWrite (C function), 10
PCF_FontWriteChar (C function), 9
PCF_FreeStaticFont (C function), 13
PCF_LOWER_CASE (C macro), 12
PCF_OpenFont (C function), 9
PCF_StaticFont (C type), 12
PCF_StaticFontCanWrite (C function), 14
PCF_StaticFontCreateTexture (C function), 14
PCF_StaticFontGetCharRect (C function), 13
PCF_StaticFontGetSizeRequest (C function),

13
PCF_StaticFontGetSizeRequestRect (C func-

tion), 13
PCF_TEXTURE_GPU (C macro), 12
PCF_TEXTURE_SDL2 (C macro), 12
PCF_TEXTURE_TYPE (C macro), 12
PCF_UPPER_CASE (C macro), 12

R
raster (C member), 12

T
texture (C member), 12

17

	Building SDL_pcf
	Unix (Autotools)
	Documentation (Sphinx):

	Using SDL_pcf
	Direct writing
	Static fonts

	API documentation
	Direct Writing
	Static fonts

	Indices and tables
	Index

