

Welcome to SDL_pcf’s documentation!

With SDL_pcf you can know easily use pixel-perfect bitmap fonts with SDL2:

	Use thousands of existing X11 bitmap fonts, including terminus [http://terminus-font.sourceforge.net/]

	Direct-to-surface writing (no temp surface needed)

	Hardware-accelerated rendering supported with SDL2 Renderer API or SDL_gpu [https://github.com/grimfang4/sdl-gpu]

Using PCF fonts is as simple as:

PCF_Font *font;
font = PCF_OpenFont("ter-x24n.pcf.gz");
PCF_FontWrite(font, "Hello world !", white, screenSurface, &location);

Getting Started:

	Building SDL_pcf
	Unix (Autotools)

	Documentation (Sphinx):

	Using SDL_pcf
	Direct writing

	Static fonts

API:

	API documentation
	Direct Writing

	Static fonts

Indices and tables

	Index

	Module Index

	Search Page

Building SDL_pcf

SDL_pcf depends on SDL2 and zlib. It has optional support for SDL_gpu [https://github.com/grimfang4/sdl-gpu]

Unix (Autotools)

	1
2
3
4

	$./configure --prefix=/usr
$ make
$ make check # build demos in ./test (optional)
$ [sudo] make install # install to system (optional)

make will build cglm to src/.libs sub folder in project folder.
If you don’t want to install cglm to your system’s folder you can get static and dynamic libs in this folder.
Headers (*.h) will be found in the src folder.

Documentation (Sphinx):

SDL_pcf documentation is based on sphinx [http://terminus-font.sourceforge.net/].

To build html documentation do the following:

	1
2

	$ cd docs
$ make html

Using SDL_pcf

SDL_pcf works with bitmap fonts distributed as PCF files. Those fonts
originates from Unix X11 and are distributed as a collection of files each file
being a representation of characters in the font in a specific size/variant,
variant being italic and bold.

For example, the file that comes with SDL_pcf tests, ter-x24n.pcf.gz is the
Terminus font, “normal” variant, 24 points. The “bold” variant would be
ter-x24b.pcf.gz. Chances are high that you already have a couple of fonts
installed on your system.

Find them out with:

$ find /usr/share/fonts/ -name "*.pcf" -or -name "*.pcf.gz"

SDL_pcf can be used in two ways:

	Direct writing of any character of the font to an SDL_Surface or using a
SDL_Renderer.

	Pre-render a set of characters to a surface or a texture and then blit
those pre-rendererd characters to their destination.
This can be hardware accelerated (SDL_Renderer or SDL_gpu).

Direct writing

This mode is the simplest and the more flexible, all characters from the font
can be drawn. However it requires pixel-level access as SDL_pcf will use the
data from the PCF font to light the appropriate pixels.

It can be used either with SDL_Surfaces or go through the SDL_Renderer API.

A typical use case would be like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	 #include <stdio.h>
 #include <stdlib.h>
 #include <SDL.h>

 #include "SDL_pcf.h"

 #define SCREEN_WIDTH 640
 #define SCREEN_HEIGHT 480

 int main(int argc, char *argv[])
 {
 SDL_Window* window = NULL;
 SDL_Surface* screenSurface = NULL;
 Uint32 black, white;
 PCF_Font *font;

 if (SDL_Init(SDL_INIT_VIDEO) < 0) {
 fprintf(stderr, "could not initialize sdl2: %s\n", SDL_GetError());
 return 1;
 }

 window = SDL_CreateWindow(
 "SDL_pcf test drive",
 SDL_WINDOWPOS_UNDEFINED, SDL_WINDOWPOS_UNDEFINED,
 SCREEN_WIDTH, SCREEN_HEIGHT,
 SDL_WINDOW_SHOWN
);
 if (window == NULL) {
 fprintf(stderr, "could not create window: %s\n", SDL_GetError());
 return 1;
 }

 screenSurface = SDL_GetWindowSurface(window);
 if(!screenSurface){
 printf("Error: %s\n",SDL_GetError());
 exit(-1);
 }

 white = SDL_MapRGB(screenSurface->format, 0xFF, 0xFF, 0xFF);
 black = SDL_MapRGB(screenSurface->format, 0x00, 0x00, 0x00);
 SDL_FillRect(screenSurface, NULL, black);

 font = PCF_OpenFont("ter-x24n.pcf.gz");
 if(!font){
 printf("%s\n", SDL_GetError());
 exit(EXIT_FAILURE);
 }

 PCF_FontWrite(font, "Hello, World!", white, screenSurface, NULL);
 SDL_UpdateWindowSurface(window);

 SDL_Delay(4000);

 PCF_CloseFont(font);

 SDL_DestroyWindow(window);
 SDL_Quit();

 exit(EXIT_SUCCESS);
 }

Build it with:

$ gcc simple-test.c -o simple-test `pkg-config sdl2 SDL2_pcf --libs --cflags`

The relevant part is highlighted. The call to PCF_FontWrite() will
write the “Hello, World!” string at 0,0 on screenSurface.

You can see a more complex example of this in test/ayba.c.

Static fonts

Static fonts are a set of pre-rendered characters built from a font. This allows
to avoid the need of direct pixel access to the destination and allows faster
blitting and hardware acceleration.

Static fonts are built from a loaded font and a set of characters. They are thus
limited to that set.

Note: Static fonts can be compiled to use either SDL_Renderer(default)
or SDL_gpu. This is defined at compile time and can be check using
PCF_TEXTURE_TYPE which will be either equal to
PCF_TEXTURE_SDL2 or PCF_TEXTURE_GPU.

SDL_pcf provide support functions to locate the character to copy but the actual
blitting must be done by the client code using the StaticFont struct texture
member which will be of SDL_Texture**(default) or **GPU_Image type, depending
of build-time configuration (see note below).

You can see a good example of how all of this works together in:
- test/ayba-sf.c for the SDL_Renderer API
- test/ayba-sf-gpu.c for usage with SDL_gpu

API documentation

API categories:

	Direct Writing
	Functions

	Functions documentation

	Static fonts
	Macros

	Functions

	Structure documentation

	Macros documentation

	Functions documentation

Direct Writing

Functions

	PCF_OpenFont()

	PCF_CloseFont()

	PCF_FontWriteChar()

	PCF_FontWrite()

	PCF_FontGetSizeRequest()

	PCF_FontGetSizeRequestRect()

	PCF_FontRenderChar()

	PCF_FontRender()

Functions documentation

	
PCF_Font *PCF_OpenFont(const char *filename)

	Opens a PCF font file. Supports both .pcf and .pcf.gz.

	Parameters:

	filename The file to open

	Returns:

	a PCF_Font opaque struct representing the font.
The caller must call PCF_CloseFont when done using the font.

	
void PCF_CloseFont(PCF_Font *self)

	Free resources taken up by a loaded font.
Caller code must always call PCF_CloseFont on all fonts
it allocates. Each PCF_OpenFont must be paired with a
matching PCF_CloseFont.

	Parameters:

	self The font to free.

	
bool PCF_FontWriteChar(PCF_Font *font, int c, Uint32 color, SDL_Surface *destination, SDL_Rect *location)

	Writes a character on screen, and advance the location by one char width.
If the surface is too small to fit the char or if the glyph is partly out
of the surface (start writing a 18 pixel wide char 2 pixels before the edge)
only the pixels that can be written will be drawn, resulting in a partly
drawn glyph and the function will return false.

	Parameters:

	
c The ASCII code of the char to write. You can of course use ‘a’ instead of 97.

font The font to use to write the char. Opened by PCF_OpenFont.

color The color of text. Must be in @param destination format (use SDL_MapRGB/SDL_MapRGBA to build a suitable value).

destination The surface to write to.

location Where to write on the surface. Can be NULL to write at 0,0. If not NULL, location will be advanced by the width.

	Returns:

	True on success(the whole char has been written), false on error/partial draw. Details of the failure can be retreived with SDL_GetError().

	
bool PCF_FontWrite(PCF_Font *font, const char *str, Uint32 color, SDL_Surface *destination, SDL_Rect *location)

	Writes a string on screen. This function will try it’s best to write
as many chars as possible: If the surface is not wide enough to accomodate
the whole string, it will stop at the very last pixel (and return false).
This function doesn’t wrap lines. Use PCF_FontGetSizeRequest to get needed
space for a given string/font.

	Parameters:

	
str The string to write.

font The font to use. Opened by PCF_OpenFont.

color The color of text. Must be in @param destination format (use SDL_MapRGB/SDL_MapRGBA to build a suitable value).

destination The surface to write to.

location Where to write on the surface. Can be NULL to write at 0,0. If not NULL, location will be advanced by the width of the string.

	Returns:

	True on success(the whole string has been written), false on error/partial draw. Details of the failure can be retreived with SDL_GetError().

	
bool PCF_FontRenderChar(PCF_Font *font, int c, SDL_Renderer *renderer, SDL_Rect *location)

	Writes a character on a SDL_Renderer, and advance the given location by one
char width.
If the renderer is too small to fit the char or if the glyph is partly out
of the surface (start writing a 18 pixel wide char 2 pixels before the edge)
only the pixels that can be written will be drawn, resulting in a partly
drawn glyph and the function will return false.

Note that there is no color parameter: This is controlled at the
SDL_Renderer level with SDL_SetRenderDrawColor.

	Parameters:

	c The ASCII code of the char to write. You can of course use ‘a’
instead of 97.
font The font to use to write the char. Opened by PCF_OpenFont.
renderer The renderer that will be used to draw.
location Location within the renderer. Can be NULL to write at
0,0. If not NULL, location will be advanced by the width.

	Returns:

	True on success(the whole char has been written), false on error/partial
draw. Details of the failure can be retreived with SDL_GetError().

	
bool PCF_FontRender(PCF_Font *font, const char *str, SDL_Color *color, SDL_Renderer *renderer, SDL_Rect *location)

	Writes a string on renderer. This function will try it’s best to write
as many chars as possible: If the renderer is not wide enough to accomodate
the whole string, it will stop at the very last pixel (and return false).
This function doesn’t wrap lines. Use PCF_FontGetSizeRequest to get needed
space for a given string/font.

	Parameters:

	str The string to write.
font The font to use. Opened by PCF_OpenFont.
color The color of text. If not NULL, it will overrede the current
renderer’s color. If NULL, the current renderer’s color will be used.
renderer The rendering context to use.
location Where to write on the renderer. Can be NULL to write at
0,0. If not NULL, location will be advanced by the width of the string.

	Returns:

	True on success(the whole string has been written), false on error/partial
draw. Details of the failure can be retreived with SDL_GetError().

	
void PCF_FontGetSizeRequest(PCF_Font *font, const char *str, Uint32 *w, Uint32 *h)

	Computes space (pixels width*height) needed to draw a string using a given
font. Both @param w and @param h can be NULL depending on which metric you
are interested in. The function won’t fail if both are NULL, it’ll just be
useless.

	Parameters:

	str The string whose size you need to know.
font The font you want to use to write that string
w Pointer to somewhere to place the resulting width. Can be NULL.
h Pointer to somewhere to place the resulting height. Can be NULL.

	
void PCF_FontGetSizeRequestRect(PCF_Font *font, const char *str, SDL_Rect *rect)

	Same PCF_FontGetSizeRequest as but fills an SDL_Rect. Rect x and y
get initialized to 0.

	Parameters:

	str The string whose size you need to know.
font The font you want to use to write that string
rect Pointer to an existing SDL_Rect (cannot be NULL) to fill with
the size request.

Static fonts

Macros

	PCF_TEXTURE_TYPE

	PCF_TEXTURE_SDL2

	PCF_TEXTURE_GPU

	PCF_LOWER_CASE

	PCF_UPPER_CASE

	PCF_ALPHA

	PCF_DIGITS

Functions

	PCF_FontCreateStaticFont()

	PCF_FontCreateStaticFontVA()

	PCF_FreeStaticFont()

	PCF_StaticFontGetCharRect()

	PCF_StaticFontGetSizeRequest()

	PCF_StaticFontGetSizeRequestRect()

	PCF_StaticFontCanWrite()

	PCF_StaticFontCreateTexture()

Structure documentation

	
PCF_StaticFont

	The structure has the following public members:

typedef struct{
 SDL_Surface *raster;
 xCharInfo metrics;
 SDL_Texture|GPU_Image *texture;
}PCF_StaticFont;

	
PCF_StaticFont raster

	The pre-rendered characters for that font, in a raster. Usable for any software
blitting operation.

	
PCF_StaticFont texture

	The pre-rendered characters for that font in a GPU-friendly texture. Be sure to call
PCF_StaticFontCreateTexture() before using it.

	
PCF_StaticFont metrics

	See somewhere else

Macros documentation

	
PCF_TEXTURE_TYPE

	Defined at build time to either PCF_TEXTURE_SDL2 (default) or
PCF_TEXTURE_GPU

	
PCF_TEXTURE_SDL2

	SDL_pcf is built to support SDL2 textures. PCF_StaticFont texture
member is of SDL_Texture* type

	
PCF_TEXTURE_GPU

	SDL_pcf is built to support SDL_gpu textures. PCF_StaticFont
texture member is of GPU_Image* type

	
PCF_LOWER_CASE

	Pre-defined character set for use with PCF_FontCreateStaticFont()

#define PCF_LOWER_CASE "abcdefghijklmnopqrstuvwxyz"

	
PCF_UPPER_CASE

	Pre-defined character set for use with PCF_FontCreateStaticFont()

#define PCF_UPPER_CASE "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

	
PCF_ALPHA

	Pre-defined character set for use with PCF_FontCreateStaticFont()

#define PCF_ALPHA "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"

	
PCF_DIGITS

	Pre-defined character set for use with PCF_FontCreateStaticFont()

#define PCF_DIGITS "0123456789"

Functions documentation

	
PCF_StaticFont *PCF_FontCreateStaticFont(PCF_Font *font, SDL_Color *color, int nsets, ...)

	Creates and return a pre-drawn set of characters.
The font can be closed afterwards. The return value must be freed by the
caller using PCF_FreeStaticFont().

Once drawn, static fonts are immutable: You can’t add characters on the fly,
or change colors. You’ll need to create a new static font to do that. The
purpose of PCF_StaticFont is to integrate with rendering systems based on
fixed bitmap data + coordinates, like SDL_Renderer or OpenGL.

	Parameters:

	
font The font to draw with

color The color of the pre-rendered glyphs

nsets The number of glyph sets that follows

… Sets of glyphs to include in the cache, as const char*. You can
use pre-defined sets such as PCF_ALPHA, PCF_DIGITS, etc. The function will
filter out duplicated characters.

	Returns:

	a newly allocated PCF_StaticFont or NULL on error. The error will be
available with SDL_GetError()

	
PCF_StaticFont *PCF_FontCreateStaticFontVA(PCF_Font *font, SDL_Color *color, int nsets, size_t tlen, va_list ap)

	va_list version of PCF_FontCreateStaticFont. The only difference is that
this function needs to be provided with the total(cumulative) length of
all the strings that it gets through ap. This is due to the fact that
va_list can’t be rewinded when passed as an argument to a non-variadic
function

	Parameters:

	
font See PCF_FontCreateStaticFont() font

color See PCF_FontCreateStaticFont() color

nsets See PCF_FontCreateStaticFont() nsets

tlen Total (cumulative) len of the strings passed in.

ap List of nsets char*

	Returns:

	See PCF_FontCreateStaticFont().

	
void PCF_FreeStaticFont(PCF_StaticFont *self)

	Frees memory used by a static font. Each static font created using
PCF_FontCreateStaticFont should be released using this function.

	Parameters:

	self The PCF_StaticFont to free.

	
int PCF_StaticFontGetCharRect(PCF_StaticFont *font, int c, SDL_Rect *glyph)

	Find the area in self->raster holding a glyph for c. The area is
suitable for a SDL_BlitSurface or a SDL_RenderCopy operation using
self->raster as a source

	Parameters:

	
font The static font to search in.

c The char to search for.

glyph Location where to put the coordinates, when found.

	Returns:

	0 for whitespace (glpyh untouched), non-zero if font
has something printable for c: 1 if the char as been found,
-1 otherwise. When returning -1, glpyh has been set to the default glyph.

	
void PCF_StaticFontGetSizeRequest(PCF_StaticFont *font, const char *str, Uint32 *w, Uint32 *h)

	Computes space (pixels width*height) needed to draw a string using a given
font. Both w and h can be NULL depending on which metric you
are interested in. The function won’t fail if both are NULL, it’ll just be
useless.

	Parameters:

	
str The string whose size you need to know.

font The font you want to use to write that string

w Pointer to somewhere to place the resulting width. Can be NULL.

h Pointer to somewhere to place the resulting height. Can be NULL.

	
void PCF_StaticFontGetSizeRequestRect(PCF_StaticFont *font, const char *str, SDL_Rect *rect)

	Same PCF_StaticFontGetSizeRequest as but fills an SDL_Rect. Rect x and y
get initialized to 0.

	Parameters:

	
str The string whose size you need to know.

font The font you want to use to write that string

rect Pointer to an existing SDL_Rect (cannot be NULL) to fill with
the size request.

	
bool PCF_StaticFontCanWrite(PCF_StaticFont *font, SDL_Color *color, const char *sequence)

	Check whether font can be used to write all chars given in
sequence in color color.

	Parameters:

	
color The color you want to write in

sequence All the chars you may want to use

	Returns:

	true if all chars of sequence can be written in
color, false otherwise.

	
void PCF_StaticFontCreateTexture()

	Creates a hardware-friendly texture into font. Parameters depends on which support
(SDL2_Renderer or SDL_gpu) was compiled in.

	Parameters:

	
font The font to act on

renderer When using SDL2_Renderer, the renderer which the texture will belong
to

Index

 M
 | P
 | R
 | T

M

 	
 	metrics (C member)

P

 	
 	PCF_ALPHA (C macro)

 	PCF_CloseFont (C function)

 	PCF_DIGITS (C macro)

 	PCF_FontCreateStaticFont (C function)

 	PCF_FontCreateStaticFontVA (C function)

 	PCF_FontGetSizeRequest (C function)

 	PCF_FontGetSizeRequestRect (C function)

 	PCF_FontRender (C function)

 	PCF_FontRenderChar (C function)

 	PCF_FontWrite (C function)

 	PCF_FontWriteChar (C function)

 	PCF_FreeStaticFont (C function)

 	
 	PCF_LOWER_CASE (C macro)

 	PCF_OpenFont (C function)

 	PCF_StaticFont (C type)

 	PCF_StaticFontCanWrite (C function)

 	PCF_StaticFontCreateTexture (C function)

 	PCF_StaticFontGetCharRect (C function)

 	PCF_StaticFontGetSizeRequest (C function)

 	PCF_StaticFontGetSizeRequestRect (C function)

 	PCF_TEXTURE_GPU (C macro)

 	PCF_TEXTURE_SDL2 (C macro)

 	PCF_TEXTURE_TYPE (C macro)

 	PCF_UPPER_CASE (C macro)

R

 	
 	raster (C member)

T

 	
 	texture (C member)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to SDL_pcf’s documentation!

 		
 Building SDL_pcf

 		
 Unix (Autotools)

 		
 Documentation (Sphinx):

 		
 Using SDL_pcf

 		
 Direct writing

 		
 Static fonts

 		
 API documentation

 		
 Direct Writing

 		
 Functions

 		
 Functions documentation

 		
 Static fonts

 		
 Macros

 		
 Functions

 		
 Structure documentation

 		
 Macros documentation

 		
 Functions documentation

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

